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Derived herein is a set of partial differential equations governing the propagation 
of an arbitrary, long-wave disturbance of small, but finite amplitude. The 
equations reduce to that of Boussinesq (1872) when the assumption is made 
that the disturbance is propagating in one direction only. The equations are 
hyperbolic with characteristic curves of constant slope. The initial-value problem 
can be solved very readily by numerical integration along characteristics. A few 
examples are included. 

1. Introduction 
A difficult and important part of the theory of water waves concerns the propa- 

gation of disturbances of small or moderate height and of long wavelength. 
These two restrictions may be expressed mathematically by the inequalities 

where h is the uniform depth of the water, a is a length representative of the 
amplitude, and h is a length representative of the wavelength of the disturbance. 

Three different theories have been advanced to predict the development of 
wave disturbances of this kind. One by Airy (1 845) makes the additional assump- 
tion that the pressure distribution is hydrostatic. It can be shown that Airy’s 
theory does not permit long waves of finite amplitude to propagate without 
change of shape. The disturbances eventually steepen and break, no matter 
how small they are to begin with. It may be shown that Airy’s theory implies 
the additional restriction that h2 

--> 1. 
h h2 

Another theory, by JefFreys & Jeffreys (1946), is valid when 

Finally, however, there is an equation, given first by Boussinesq, which governs 
the propagation of long waves when 

a h2 j-p- 1. 
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It is 

where 9’ is the height of the surface above the undisturbed level, g is gravity, x’ 
is horizontal distance, and t‘ is time. The Boussinesq theory includes the theories 
of Airy and Jeffreys & Jeffreys as special cases. 

The above interpretation of the long-wave problem was first made by Ursell 
(1953; see also Benjamin & Lighthill 1954), who gave an independent derivation 
of Boussinesq’s equation. As Ursell, and Keulegan & Patterson (1940) have 
pointed out, the Boussinesq equation is satisfied by the solitary wave (Rayleigh 
1876), which is precisely a long wave which does propagate without change of 
shape. Consequently, Ursell’s paper, in pointing out the importance of the 
quantity ah2/h3, finally explained the long-wave paradox which consisted of the 
inapplicability of the Airy theory to the solitary wave. 

An important restriction which was imposed quite obviously in Keulegan 
& Patterson’s development of Boussinesq’s equation, and not so obviously in 
Ursell’s development, is that the Boussinesq equation does not govern the propa- 
gation of an arbitrary long-wave disturbance, but, rather, holds only when the 
wave heights propagate in one direction only, a t  a speed nearly equal to (gh)*. 
Korteweg & de Vries (1895) also considered the initial-value problem for long 
waves, but again the analysis was restricted to disturbances moving in one 
direction only. The purpose of this paper is to  derive a set of equations which 
predicts the development of an arbitrary, small-amplitude, long-wave distur- 
bance. It will be shown that the present theory reduces to  that of Boussinesq 
when the restriction is made that the disturbances propagate in one direction 
only. -/- 

2. The differential equations of long gravity waves 
Figure 1 represents a portion of a long-wave disturbance.$ The motion is two- 

dimensional, the undisturbed height of the water is h, and 7‘ is the height of the 
disturbance above the undisturbed level. We assume that the motion is irrota- 
tional with a velocity potential q5’, which satisfies 

A t  the surface the pressure is constant, and the dynamic equation is 

where we have assumed that there is some section at  which 

= u; = v; = (a#’/ati), = 0. 

Meyer (1962) discusses the interaction of two solitary waves moving through each 
other from opposite directions. He uses a differential equation which really applies to 
disturbances propagating in one direction only, but Meyer’s result that the interaction is 
linear still follows from a slightly altered argument. 

$ In this paper dimensional variables are denoted by primed symbols, non-dimensional 
quantities by unprimed symbols. 
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An important special case is when the fluid is a t  rest and remains at rest in some 
part of the region. 

The equation of the surface is 

y‘ - h - q’(x’, t’) = 0, (8) 

so that the kinematic condition at  the surface is 

I a?‘ allf  
21, = -+u’- 

at‘ ax’ (9) 

In  addition, at the bottom, y’ = 0,  the vertical component of the velocity must 
vanish. 

Y ’  

h I 

In his derivation of the solitary wave, Rayleigh assumed that the complex 
potential for the motion is given by the 

where the right-hand side of equation (10) represents the Taylor series expansion 
of a function of a complex variable x’ + iy‘ about yf  = 0. In  addition to satisfying 
the kinematic condition at the bottom of the channel, this expansion is inherently 
suitable for the complex potential of a long wave, because the changes in such 
a wave are very gradual in the x’-direction, and the higher derivatives with 
respect to xf are small. In Rayleigh’s case, the motion is stationary with respect 
to a co-ordinate system moving with the wave, so that the function B’ is a function 
of x’ only. Here, however, the disturbances are unsteady, and we permit F’ 
to be a function of time as well. 

The real part of equation (10) is 

$I(x’, y ’ , t ‘ )  = F‘(x’,t’)-(y’2/2!)B;<x!(xf,tf)+ ... 
We now make all quantities dimensionless as follows: 
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Our two fundamental equations (7) and (9) can now be written as 

lil = (45t)s - H45: + 45;)s 
lilt = - (45J.9 + r z ( 4 5 x ) s .  

(13) 

(14) 

In an earlier paper (Long 1956) it was shown that a fundamental assumption 
in the derivation of the solitary wave was that, if the non-dimensional amplitude 
of the disturbance is of the order of a, i.e. if 

lil a, (15) 

apx a+. (16) 

then derivatives in the x-direction have the order of magnitudef- 

The same assumption is made here for the unsteady case. Obviously (16) is in 
accordance with the fundamental property of long waves as expressed in (4). 
An additional assumption, also carried over from the steady-state problem, is 
that 

Notice that U is the velocity at the bottom of the channel. 
One additional assumption must be made here regarding the order of magni- 

tude of the partial derivative with respect to t. In  the case of the solitary wave, 
which has a non-dimensional speed of propagation 

UE -Fx N a. (17)  

c = 1 + &  (18) 

the time derivative is related to  the space derivative by the equation 

a a 
at = -c- ax- 

In our case, disturbances propagate in both directions and the time and space 
derivatives are not simply related. Instead, we assume 

a a  
at Zi-  
- 

This is certainly satisfied when the disturbance is sufficiently small. 

and (14) two equations in two unknowns, r and F .  Thus 
We now use the non-dimensional form of (1 1) to  obtain from equations (13) 

Y2 Y4 #x = Fz - - Fxxz + -- Fxzzzz - . . . , 
2 !  4! 

f Here, the small quantity a: will appear in the initial conditions. It must appear in 
such 8 way that the initial disturbance has the properties (15), (16) and (17) .  
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Equations (13) and (14) now become 

= 4 + 0(a2), 
qt = FZ2 + O(a8). 

To this order we have, therefore, 

Tu-T,, = W3)- (29) 
This is the classical wave equation for the propagation of long, infinitesimal dis- 
turbances. If we retain one more order of magnitude in each of equations (25) 

(30) 
and (26), we gett 

(31) 

= 4 - BE",,, - +F: + 0(a3), 

Tt = c z  + TF, - +F,, + F,T, + O ( 4 .  

Notice that in equation (30) we may substitute for Fzd the term vtt and commit an 
error no greater than that already made in the derivation of our equations. 
Similar substitutions may be made in the other second-order terms, so that our 
differential equations may be written 

7 = 4 - +Tit - BF,: + 0(a3), 

Tt = F,, + TTt - Q7tz.Z + FT, + O ( 4  

Finally, with the definitions U = - F,, 

0 = Tt, 

Q = Tu, 

Tt+ UT,+U,-TVt+&Q, = 0, 
v z + q -  Uqt++Qx = 0,  

T , - W  = 0, 
U t - Q  = 0. 

we may obtain a set of four first-order equations 

In the above, we have made the approximations 

Tzzt = Ttu + O(a% 
VU, = - Uy, + O(a5). 

7 One may derive the results of this section by incorporating a into the non-dimensional 
definitions of (12) and then seeking a solution in the form of an expansion in the small 
parameter a. For example, the non-dimensional F is then P'(z',tr)/a4g3h# instead of 
F'(x', t ' ) / g h % .  The differential equations of the first two approximations can then be 
combined to form the two equations (30) and (31). This approach makes unnecessary the 
tentative assumptions that 7 - a, a/ax - a+, U N a, a/at - d, but it has the disadvantage 
of being lengbhy. 
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Equations (37)-( 40) are the fundamental differential equations governing 
the propagation of long-wave disturbances. They reduce to equation ( 5 ) ,  derived 
by Boussinesq, if we substitute 

a a 
at -2% 

= +-  - (43) 

in the second-order terms. Physically, this implies that the wave disturbances 
are all moving in one direction at a speed nearly equal to the speed of propa- 
gation of infinitesimal long waves. 

In  addition, we may show that equations (37)-(40) have a solution yielding 
the solitary wave. Thus, suppose that 

Equations (37) and (38) then become 
y, = c u ,  - +c2yxxx - ULL, 

- cyx = - u, - C T T r  + QC8,,, - UT,. 
(45) 

(46) 

If we make the approximation 

these may be integrated to yield 

where we have imposed the condition that the fluid is at rest a t  infinity. The 
linear theory shows that c is practically equal to 1. Therefore, if we let c = 1 + bct, 
equations (48) and (49) become 

8 = U + b a U  - &yXx - +v2, 
8 = U - bay  + y 2  - &y,,. 

3bav - +ysz - $q2 = 0. Subtracting, we get 
With the substitutions, 

(53) 

Equation (54) has the integral 

- @ 2 - 1  27 3 + b a y 2  = 0, ( 5 5 )  

s=o ,  v = a .  ( 56)  

(57) 

where we have again used the condition that the fluid is at  rest a t  infinity. At 
the crest we have 

Therefore, b = +. This is the classical result for the solitary wave. The equation 
-1 68% 2 - 1 . 3  r y  + *ay2 = 0 
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may be integrated again to yieId the profile of the wave. Notice that the solitary 
wave is the only steady motion in which the fluid is at rest at  either end of the 
infinite channel. This was apparently first noticed by Benjamin & Lighthill 
(1954), although it was pointed out by both Boussinesq and Keulegan that 
solitary wave motion appears to be a highly favoured type of disturbance. 

3. The initial-value problem 
It is of great interest to consider the development of an arbitrary long-wave 

disturbance as time progresses. We may do this by investigating the charac- 
teristics of the hyperbolic equations (37)-(40). Using the method outlined by 
Courant & Friedrichs (1 gas), we find that the system has characteristic curves 
which are straight lines with the slopes 

dx 
= 0 ,  0, J3, - dt 

(58) 

Therefore, with the new independent variables 

the equations may be written in characteristic form as follows: 

( (2) 

(63) 

These may be solved very easily by integrating numerically along the character- 
istic lines in the (x, t)-plane. The initial data at  t = 0 are the elevation 9 and the 
velocity U as functions of distance along the x-axis. It then follows from the 
differential equations that, to the present order of accuracy, 

4. Numerical integrations 
A few integrations were performed on an IBM7090 electronic computer to 

illustrate the feasibility of a numerical solution of the initial-value problem. The 
integrations were along characteristic curves. In all cases, the initial velocity was 
zero, and the elevation was symmetrical about x = 0. 

The first example is shown in figure 2 .  The initial disturbance had an amplitude 
of 0.50. The portion that moved to the right developed into a disturbance with 
a crest of amplitude about 0.20. After some time a weak trough developed and 
also moved towards the right. The amplitude of the crest varied considerably 
as time went on, as shown in figure 3. The period of the oscillation was a little over 
4 non-dimensional time units, and the overall tendency was for a decrease of 
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mest amplitude. The speed of the crest was very variable, averaging 0-78 when 
the amplitude was a minimum, and 1.33 when the amplitude was a maximum. 
The average speed, after the two waves were well separated, was 1.08. The aver- 
age speed of the trough was 0.95, although it too was very variable. The trough 
amplitude varied with time, its period being about 25 % shorter than the period 
of oscillation of the crest amplitude. 

t = 2  

1.0 t = 4  * 0-5 
X 

1 *0 - 0.5 L t = 6  

t = 8  1 *0 
s 2  0.5 

-x 

r = l O  

S 
0 8 12 16 18 

t 

FIGURE 2. Profile of a wave disturbance of small amplitude. Distances are in units of 
R: = x’/h, y = y‘/h, and time in units oft  = t’J(g/h). 
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FIGURE 3. Amplitude of the crest as a function of time for the disturbance 
of figure 2. 

On the whole the behaviour and properties of the main disturbance were very 
similar to those of the solitary wave except for the amplitude oscillation. As an ex- 
ample, in figure 4 the profile ofa  solitary wave of the same height, 0-217, is plotted 
on the same graph as the disturbance o f t  = 8.0. The resemblance is quite goodex- 
cept that the computed disturbance is somewhat more peaked. In  particular the 
wavelengths are about the same. The theoretical speed of the solitarywave is 1.10. 

Figure 5 shows the development of a bigger initial disturbance. The main 
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disturbance develops an amplitude of about 0.380. There was an indication of a 
periodic variation of amplitude, but the integration was too short to permit the 
kind of analysis shown in figure 3. The speed of the crest was about 1-38 when it 

_-- -- 
FIGURE 4. Profile of the disturbance of figure 2 a t  t = 8, and the solitary 

wave of the same amplitude. 
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FIGURE 5. Profile of a wave disturbance of moderate amplitude. Distances 
are in units of x = x'/h, y = y'/h, and time in units oft = t 'J(g/h). 

- _ _  
FIGURE 6. Profile of the disturbance of figure 5 at t = 4, and tho 

solitary wave of the same amplitude. 

first developed. It then slowed down to a speed of about 1.16 near the end of the 
integration. Finally, the main disturbance again resembled a solitary wave of 
the same amplitude. This is shown by the profile of a s.olitary wave of the same 
height, 0.39, plotted on the same graph as the disturbance o f t  = 4 (figure 6 ) .  
The critical speed of this solitary wave is 1.18. 
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